MULTI-ATTRIBUTE VEHICLE PERFORMANCE OPTIMIZATION: AMESIM AND MODEFRONTIER INTERFACE

A Joint Webinar by ESTECO and SIEMENS

June 26, 2014

Agenda

SIEMENS

Team Introduction

Alex Duggan Sr. Application Engineer ESTECO North America

Roel Van De Velde Business Development Manager ESTECO North America

Bob Ransijn Team Leader Siemens PLM

SIEMENS

Introduction modeFRONTIER

ESTECO – about us

ESTECO is a pioneer in **numerical optimization** solutions

Perfecting engineering and reducing complexity in the design process is our vision

Complexity Across Domains

Different teams create more detailed and domain specific models but need to be able to verify them against a cohesive view of the system

WOOL FRONTIER

is an integration platform for **multi-objective and multi-disciplinary optimization**. It provides seamless coupling with third party engineering tools, enables the **automation** of the design simulation process, and facilitates **analytic decision making**

www.esteco.com

DESIGN SPACE EXPLORATION

ANALYTICS AND VISUALIZATION

PHAINHARMYK

DECISION MAKING

Integration and Process Automation

The modeFRONTIER workflow guarantees formalization and management of all logical steps of an engineering process. Its powerful integration capabilities allow product engineers and designers to **integrate and drive multiple Computed Aided Engineering (CAE) tools**.

Integration and automation flow with modeFRONTIER

modeFRONTIER offers **over 40 direct integration nodes** to couple with the **most popular engineering solvers**, in which communication is guaranteed by APIs or automatic file exchange. Other wizard style tools are available **for building a bridge** between modeFRONTIER and any **commercial or in-house codes**.

ESTECO's expertise in numerical solutions equips designers with a **complete array** of optimization algorithms covering **deterministic**, **stochastic** and **heuristic** methods for single and multi-objective problems.

Besides the traditional methods, modeFRONTIER provides fine-tuned **hybrid** algorithms combining **the strengths of single approaches**.

 de FRONTIER

RSM-based, or virtual optimization is a valid strategy which serves as a surrogate for heavy simulation processes, allowing engineers to fast-run the classic optimization process

How does it work in modeFRONTIER? Main advantages

1. RSMs are **trained** from an available database of real designs and validated one against another.

2. The best model is used to **compute** the outputs of the system; this process is called **virtual optimization**.

3. The best designs obtained through virtual optimization are then **evaluated by the real solver**

- \checkmark perform thousands of design evaluations in short time
- \checkmark accelerate the optimization step
- \checkmark use small amounts of data efficiently
- smart exploitation of available computational resources

The input parameters' **uncertainty** is reflected in the outputs of the system: modeFRONTIER multiobjective robust design optimization (MORDO) algorithms generate a **scatter of samples** (noise factors) around the design, in order to verify how sensitive the design is to variations, i.e. whether the values of the outputs are still within the user-defined limits.

Design Space Exploration

modeFRONTIER offers a number of sophisticated and efficient DOE methods:

- \checkmark **Space Filler DOEs** serve as the starting point for a subsequent optimization process or a database for response surface training;
- **Statistical DOEs** are useful for creating samplings for the sensitivity analysis thus allowing in-depth understanding of the problem by identifying the sources of variation;
- **Robustness and reliability DOEs** help create a set of stochastic points for robustness evaluation;
- **Optimal Designs DOEs** are special purpose techniques used for reducing the dataset in a suitable way.

www.esteco.com

To maximize product performance, a **full and rapid understanding** of the design space is essential for extracting the most relevant information from a database of experiments.

modeFRONTIER provides a **complete and comprehensive environment for data analysis and visualization**, enabling statistical assessment of **complex datasets**. Its sophisticated **post-processing tools**, such as Sensitivity Analysis, Multi-Variate Analysis, and Visual Analysis, allow results from multiple simulations to be **visualized in a meaningful manner** and **key factors** to be identified.

www.esteco.com

Introduction AMESim

Multi-Attribute Vehicle Performance Optimization: AMESim and modeFRONTIER interface

Siemens Introduction June 26, 2014

Unrestricted © Siemens AG 2014 All rights reserved. **Smarter decisions, better products. Smarter decisions, better products.**

The Siemens Vision: Provide Answers to the Great Challenges of our Time

Siemens – the pioneer in

- **Energy** efficiency
- **Industrial** productivity
- Affordable and personalized healthcare
- **Intelligent** infrastructures

Siemens Organization: Four Sectors Covering the Global Challenges

Unrestricted © Siemens AG 2014 All rights reserved.

Page 20

Industry Automation: Boosting Industrial Productivity

SIEMENS

We help boost productivity and improve resource efficiency along the entire product development and production process to enhance the competitiveness of our customers.

Product Design and Engineering Production Engineering and Automation

The Next Level of Productivity Integrated product and production lifecycles

Adoption of "systems Engineering" Superior Product Innovation and Managing increasing complexity

SIEMENS

Siemens PL and LMS Enabling "Closed-loop System Driven Product Development"

LMS Imagine.Lab Solutions From Physics Based Authoring … … to Model Based System Engineering

SIEMENS

Automotive Engineering Challenges Balancing Emissions, Cost, and Brand Performance

Creating Brand Value through Performance | Creating Brand Value through Systems

Unrestricted © Siemens AG 2014 All rights reserved.

Page 26

Current Engineering Practice: Struggling to Control Complexity

Multiple Variants and System Architectures | Multiple Sites, Multiple Participants

What If You Could Optimize These Attributes Across the Organization?

The LMS Imagine.Lab Platform

The innovative Model-Based Systems Engineering approach for Mechatronic System Development

LMS Imagine.Lab AMESim (1/2)

The Open and Productive Development Environment

Simulate and analyze multi-physics controlled systems

LMS Imagine.Lab AMESim (2/2)

The Validated, Off-the-Shelves Physical Libraries

Chose after 4500 multi-domain models

Multi-Domain simulation in AMESim

Closed loop powertrain model for drivability

Overview

Powertrain model including:

- **HF 4 cylinder engine model (crank angle degree resolution)**
- **6 gear Automatic transmission**
- **2D longitudinal vehicle + Driver and mission profile definition**
- **3D engine bloc and mounts**

SIEMENS

LMS Imagine.Lab AMESim – The integrated platform for multi-domain system simulation

SIEMENS

VEHICLE INTEGRATION

Conventional, EV, HEV **Exhaust** Underhood Thermal Systems Air Conditioning Cabin Electrical Networks Chassis Systems

CHASSIS SUBSYSTEMS

Braking **Steering** Suspension/ Anti-rol

DRIVELINE

Torsional Analysis Dual-mass Flywheel Torque Vectoring

INTERNAL COMBUSTION ENGINE

Engine Controls Air Path **Combustion** Engine Cooling, Lubrication Fuel Injection and Valvetrain

TRANSMISSION

Manual Automatic Continuously Variable Dual Clutch Hybrid Architectures

Example 1

DEMO CHECK VALVE

ENABLE YOUR IMAGINATION

Example 1: Optimization of a Check Valve

www.esteco.com

Ō

3

2

Workflow Components:

5 Input Variables:

- Stroke Length \in [1, 10] mm
- Spring Preload E [0, 100] N
- Spring Stiffness Є [1E-5, 100] N/mm
- Seat Diameter Є [1, 25] mm
- Ball Diameter E [1, 30] mm

Constraint:

• Ball diameter must be greater than the seat diameter

Objective:

• Minimize the **sum of squares error (SSE)** between the target and simulation flow rate responses (model correlation/calibration study)

modeFRONTIER offers over 15 optimization algorithms

- 2 algorithms used for this case:
- **Levenberg-Marquardt Algorithm (LMA)**
	- Gradient based method used for curve fitting problems
	- Starting point: baseline design
- **FAST Strategy**
	- Uses Response Surface Models (RSM) and real evaluations
	- Optimization uses RSM
	- Best designs are validated
	- RSM adapted using new validation runs
	- Optimization repeated
	- **FAST-SIMPLEX**: Mono-Objective SIMPLEX algorithm used as optimizer
		- Start population: 6 Uniform Latin Hypercube (ULH) Designs of Experiments (DOE)
		- Robust convergence

Hardware:

• Dell Latitiude w/ Intel Core i7

Software:

- modeFRONTIER v4.5.4
- AMESim v13.0

Run times:

- Number of parallel evaluation: 2
- Number of total evaluations: 36
- Average single evaluation time: 5 sec
- Total runtime: 2 min

Levenberg-Marquardt started from baseline design:

LMA optimization history:

Converged to optimum in 5 moves

Optimized flow rate comparison:

Optimized flow rate comparison:

Check Valve: Workflow for FAST-SIMPLEX

Constraints added to ensure slopes of three linear segments of the curve are within ±20% of target (speed-up convergence);

Check Valve: FAST-SIMPLEX Starting Population

EN *wode* FRONTIER

FAST-SIMPLEX started from 6 Uniform Latin Hypercube (ULH) DOE points

FAST-SIMPLEX history:

FAST-SIMPLEX history (showing improved designs):

Optimization convergence:

Optimized flow rate comparison:

Levenberg-Marquardt FAST-SIMPLEX

DEMO PARALLEL HYBRID VEHICLE

Unrestricted © Siemens AG 2014 All rights reserved.

Page 55

ENABLE YOUR IMAGINATION

Example 2: Parallel Hybrid Vehicle

www.esteco.com

Ō

3

2

4 Input Variables:

- Suspension Stiffness E [5000, 15000] N/m
- Tire Adherence Coefficient E [0.5, 1.5]
- Wheel Inertia $E[0.35, 4.0]$ kg·m²
- Vehicle Mass E [1250, 1550] kg

Objectives: • **Minimize** the **total fuel consumption** • **Minimize** the maximum **jerk**Pitch

Pure multi-objective optimization defined

2 approaches used for this case:

- **DOE + Statistical Analysis**
	- 100 ULH DOE points
	- Correlation
	- Main effect
	- Smoothing-spline ANOVA (SS-ANOVA)
		- ANOVA decomposition applied to smoothing spline fit to data
- 3 optimization algorithms used:
	- **FAST-NSGA-II**: FAST strategy using non-dominated sorting genetic algorithm (NSGA) used as optimizer
	- **HYBRID**: Combination of gradient based and genetic algorithm optimizers
	- **NSGA-II**: Regular NSGA used as optimizer
	- Starting population: 10 ULH DOE points and ran a total of 1000 evaluations

ENABLE YOUR IMAGINATION

Example 2: Parallel Hybrid Vehicle Statistical Analysis

Mode FRONTIER

www.esteco.com

Ο

3

2

Correlation values:

- Values represent the slope of a normalized linear regression fit
- Max value 1.0, Min value -1.0

Correlation values:

- Values represent the slope of a normalized linear regression fit
- Max value 1.0, Min value -1.0

Parallel Hybrid Vehicle: Statistical Analysis

Parallel Hybrid Vehicle: Statistical Analysis

Factors

Parallel Hybrid Vehicle: Statistical Analysis

MOde **FRONTIER**

 1.0 Effect on Fuel Consumption Effect on Fuel Consumption **SS-ANOVA:** 0.8 • ANOVA decomposition 0.6 applied to smoothing spline 0.4 fit All factor effects sum to 1 0.2 0.0 Mass Tire_Adherence Wheel_Inertia Susp_Stiffness 1.0 0.8 **Mass** contributes over **80%** of Effect on Jerk the total effect on fuel 0.6 consumption 0.4 **Suspension stiffness** 0.2 contributes over **95%** of the 0.0 Mass Wheel_Inertia Tire_Adherence Susp_Stiffness total effect on jerk

ENABLE YOUR IMAGINATION

Example 2: Parallel Hybrid Vehicle

Mode FRONTIER

Optimization

www.esteco.com

Ō

3

2

Hardware:

• Dell Latitiude w/ Intel Core i7

Software:

- modeFRONTIER v4.5.4
- AMESim v13.0

Run times:

- Number of parallel evaluation: 1
- Number of total evaluations: 1000
- Average single evaluation time: 6-7 sec
- Total runtime: ≈3 hrs.

Parallel Hybrid Vehicle: Optimization Convergence

NSGA-II History:

Parallel Hybrid Vehicle: Optimization Results

Pareto designs for the 3 optimization algorithms:

Pareto at **800 evaluations**

Parallel Hybrid Vehicle: Optimization Results

Pareto designs for the 3 optimization algorithms:

Trade-off analysis:

Trade-off analysis:

Trade-off analysis:

MOde **FRONTIER**

Trade-off analysis:

Conclusions

- modeFRONTIER provides an easy to use interface to integrate AMESim models for (collaborative) MDO
- Get more out of your AMESim models by exploring the full design space and visualize all options
- Automate your simulation process by integrating AMESim with other analytical tools

SIFMFI

• Very suitable for Model Based Systems Engineering

Contact Info

ESTECO: na.sales@esteco.com www.esteco.com

SIEMENS: bob.ransijn@siemens.com www.siemens.com

Q & A

